metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(4,4'-methylenedicyclohexylaminium) µ-benzene-1,4-dicarboxylato-bis[trichloridozinc(II)] tetrahydrate

Chen-Yen Hsu, Chun-Wei Yeh, Chi-Phi Wu, Chia-Her Lin* and Jhy-Der Chen

Department of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan Correspondence e-mail: chiaher@cycu.edu.tw

Received 15 September 2008; accepted 12 October 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.009 Å; R factor = 0.057; wR factor = 0.132; data-to-parameter ratio = 16.7.

The title compound, $(C_{13}H_{28}N_2)_2[Zn_2(C_8H_4O_4)Cl_6]\cdot 4H_2O$, was prepared by the reaction of $ZnCl_2\cdot 6H_2O$, benzene-1,4dicarboxylic acid and 4,4'-diaminodicyclohexylmethane in methanol. The $[Zn_2Cl_6(C_8H_4O_4)]^{4-}$ anions lie on centres of inversion and comprise two $ZnCl_3$ groups bridged by benzene-1,4-dicarboxylate. In addition to $N-H\cdots Cl$ and $N-H\cdots O$ hydrogen bonds between the cations and anions, solvent water molecules form $O-H\cdots O$ and $O-H\cdots Cl$ hydrogen bonds to give a three-dimensional network.

Related literature

For related structures, see: Clausen *et al.* (2005); Thirumurugan & Rao (2005); Li *et al.* (1998, 1999).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_{13}{\rm H}_{28}{\rm N}_{2})_2[{\rm Zn}_2({\rm C}_8{\rm H}_4{\rm O}_4){\rm Cl}_6] & \cdot \\ 4{\rm H}_2{\rm O} \\ M_r = 1004.36 \\ {\rm Monoclinic}, \ P2_1/c \\ a = 14.264 \ (3) \ {\rm \AA} \\ b = 14.202 \ (2) \ {\rm \AA} \\ c = 11.712 \ (2) \ {\rm \AA} \end{array}$

Data collection

Bruker P4 diffractometer Absorption correction: ψ scan (XSCANS; Siemens, 1995) $T_{\min} = 0.694$, $T_{\max} = 0.868$ 5093 measured reflections 4071 independent reflections $\mu = 1.42 \text{ mm}^{-1}$ T = 295 (2) K $0.70 \times 0.40 \times 0.10 \text{ mm}$ 3405 reflections with $I > 2\sigma(I)$

 $\beta = 100.498 \ (16)^{\circ}$

V = 2333.0 (7) Å³

Mo $K\alpha$ radiation

Z = 2

3405 reflections with $I > 2\sigma(I R_{int} = 0.027)$ 3 standard reflections every 97 reflections intensity decay: none

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.132$ S = 1.054071 reflections 244 parameters

2 restraints H-atom parameters constrained $\Delta \rho_{max} = 1.10$ e Å⁻³ $\Delta \rho_{min} = -0.83$ e Å⁻³

Table 1		
Hydrogen-bond ge	eometry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots Cl3$	0.89	2.41	3.252 (4)	159
$N1 - H1B \cdot \cdot \cdot Cl2^{i}$	0.89	2.51	3.290 (4)	147
$N1 - H1C \cdot \cdot \cdot O3^{i}$	0.89	1.94	2.828 (5)	178
$N2-H2A\cdots Cl1^{ii}$	0.89	2.95	3.725 (5)	146
$N2-H2A\cdots Cl2^{ii}$	0.89	2.67	3.321 (4)	131
$N2-H2B\cdots O2^{iii}$	0.89	2.06	2.928 (4)	166
$N2-H2C\cdots O4^{iv}$	0.89	1.95	2.813 (4)	164
O3−H3 <i>B</i> ···O2	1.00	1.81	2.798 (4)	167.8
$O3-H3C\cdots Cl1^{v}$	1.06	2.24	3.262 (4)	160.3
$O4-H4B\cdots Cl3$	0.98	2.21	3.172 (4)	164.9
$O4-H4C\cdots Cl2^{vi}$	0.94	2.38	3.258 (3)	154.9

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) x - 1, y, z; (iii) -x, -y + 1, -z; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) -x + 1, -y + 1, -z; (vi) -x + 1, -y + 1, -z + 1.

Data collection: *XSCANS* (Siemens, 1995); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the National Science Council of Taiwan for support. This research was also supported by the Project of the Specific Research Fields in Chung Yuan Christian University, Taiwan, under grant No. CYCU-97-CR-CH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2304).

References

- Clausen, H. F., Poulsen, R. D., Bond, A. D., Chevallier, M.-A. S. & Iversen, B. B. (2005). J. Solid State Chem. 178, 3342–3351.
- Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8571–8572.
- Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). *Nature (London)*, **402**, 276–279.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Thirumurugan, A. & Rao, C. N. R. (2005). J. Mater. Chem. 15, 3852-3858.

Acta Cryst. (2008). E64, m1412 [doi:10.1107/S1600536808033011]

Bis(4,4'-methylenedicyclohexylaminium) *#*-benzene-1,4-dicarboxylato-bis[trichloridozinc(II)] tetrahydrate

C.-Y. Hsu, C.-W. Yeh, C.-P. Wu, C.-H. Lin and J.-D. Chen

Comment

The dianion of benzene-1,4-dicarboxylic acid is an important linker to bridge metal atoms which show significant chemical and physical properties (Clausen *et al.*, 2005; Thirumurugan & Rao, 2005; Li *et al.*, 1998, 1999). Since the anions contain four O atoms which are good hydrogen-bond acceptors, co-crystallization with organic cations would be expected to result in extensive hydrogen-bond networks. The title compound (Fig. 1) contains N—H…Cl and N—H…O hydrogen bonds between the cations and the anions, as well as O—H…O and O—H…Cl interactions formed by the lattice water molecules.

Experimental

 $ZnCl_{2.6H_2O}$ (0.49 g, 2.00 mmol) was added to a solution of 4,4'-diaminodicyclohexylmethane (0.21 g,1.00 mmol) and benzene-1,4-dicarboxylic acid (0.17 g, 1.00 mmol) in 30 ml MeOH. The mixture was refluxed for 24 h to yield a colorless solution with some white solid. The solution was filtered and then diethyl ether was added to induce precipitation. The precipitate was filtered and washed by ether (3 × 10 ml), then dried under reduced pressure to give a white powder. Colourless crystals were obtained by slow diffusion of ether into a methanol solution of the white powder over several weeks.

Refinement

H atoms bound to C and N atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and N—H = 0.89 Å, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C/N)$. The H atoms of the water molecules were located in difference Fourier maps, then constrained to ride on their parent O atom with $U_{iso}(H) = 1.5U_{eq}(O)$. The C8—C11 and C11—C12 bond distances were restrained to be identical with a standard uncertainty of 0.02 Å.

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms. The $[Zn_2Cl_6(C_8H_4O_4)]^{4-}$ anion lies on a centre of inversion. Symmetry code: -*x*, 1 - *y*, -*z*.

Bis(4,4'-methylenedicyclohexylaminium) µ-benzene-1,4-dicarboxylato-bis[trichloridozinc(II)] tetrahydrate

Crystal data (C₁₃H₂₈N₂)₂[Zn₂(C₈H₄O₄)Cl₆]·4H₂O *M_r* = 1004.36

 $F_{000} = 1052$ $D_{\rm x} = 1.430 \text{ Mg m}^{-3}$

Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 14.264 (3) Å
<i>b</i> = 14.202 (2) Å
<i>c</i> = 11.712 (2) Å
$\beta = 100.498 \ (16)^{\circ}$
$V = 2333.0 (7) \text{ Å}^3$
Z = 2

Data collection

Bruker P4 diffractometer	$R_{\rm int} = 0.027$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.0^{\circ}$
T = 295(2) K	$h = -16 \rightarrow 16$
ω scans	$k = -1 \rightarrow 16$
Absorption correction: ψ scan (XSCANS; Siemens, 1995)	$l = -1 \rightarrow 13$
$T_{\min} = 0.694, \ T_{\max} = 0.868$	3 standard reflections
5093 measured reflections	every 97 reflections
4071 independent reflections	intensity decay: none
3405 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.132$	$w = 1/[\sigma^2(F_o^2) + (0.0344P)^2 + 8.1458P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
4071 reflections	$\Delta \rho_{max} = 1.10 \text{ e } \text{\AA}^{-3}$
244 parameters	$\Delta \rho_{min} = -0.83 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Mo *K* α radiation $\lambda = 0.71073$ Å

 $\theta = 5.7-12.5^{\circ}$ $\mu = 1.42 \text{ mm}^{-1}$ T = 295 (2) KPlate, colourless $0.70 \times 0.40 \times 0.10 \text{ mm}$

Cell parameters from 33 reflections

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn	0.37495 (3)	0.50908 (4)	0.23918 (5)	0.04083 (17)
Cl1	0.48147 (11)	0.41661 (13)	0.17455 (16)	0.0807 (5)
Cl2	0.41895 (9)	0.66231 (9)	0.22022 (11)	0.0522 (3)
C13	0.37246 (11)	0.48512 (10)	0.42863 (12)	0.0611 (4)
01	0.2401 (2)	0.4944 (3)	0.1703 (3)	0.0528 (9)
O2	0.2553 (2)	0.4968 (3)	-0.0161 (3)	0.0515 (8)
O3	0.3060 (3)	0.6499 (3)	-0.1424 (4)	0.0829 (14)
H3B	0.2830	0.5919	-0.1077	0.124*
H3C	0.3735	0.6415	-0.1668	0.124*
O4	0.4724 (3)	0.2921 (3)	0.5161 (3)	0.0663 (11)
H4B	0.4531	0.3555	0.4871	0.099*
H4C	0.4917	0.2894	0.5972	0.099*
N1	0.3214 (3)	0.6947 (3)	0.5109 (4)	0.0624 (12)
H1A	0.3470	0.6458	0.4802	0.094*
H1B	0.3575	0.7097	0.5787	0.094*
H1C	0.3179	0.7437	0.4629	0.094*
N2	-0.3906 (3)	0.6298 (3)	0.0987 (4)	0.0495 (10)
H2A	-0.4399	0.6000	0.1193	0.074*
H2B	-0.3577	0.5897	0.0629	0.074*
H2C	-0.4119	0.6769	0.0508	0.074*
C1	0.2069 (3)	0.4959 (3)	0.0619 (4)	0.0392 (10)
C2	0.0992 (3)	0.4974 (3)	0.0298 (4)	0.0365 (9)
C3	0.0434 (3)	0.4915 (4)	0.1146 (4)	0.0447 (11)
H3A	0.0724	0.4857	0.1922	0.054*
C4	-0.0549 (3)	0.4940 (3)	0.0853 (4)	0.0425 (11)
H4A	-0.0915	0.4900	0.1432	0.051*
C5	0.2238 (3)	0.6694 (4)	0.5292 (5)	0.0494 (12)
H5A	0.2286	0.6161	0.5831	0.059*
C6	0.1788 (4)	0.7515 (4)	0.5812 (5)	0.0599 (14)
H6A	0.2171	0.7677	0.6558	0.072*
H6B	0.1766	0.8058	0.5306	0.072*
C7	0.0792 (4)	0.7268 (6)	0.5970 (6)	0.087 (2)
H7A	0.0504	0.7796	0.6301	0.104*
H7B	0.0806	0.6733	0.6487	0.104*
C8	0.0217 (4)	0.7026 (8)	0.4758 (9)	0.153 (5)
H8A	0.0323	0.7544	0.4244	0.183*
C9	0.0658 (4)	0.6144 (7)	0.4308 (9)	0.144 (5)
H9A	0.0680	0.5633	0.4862	0.173*
H9B	0.0278	0.5943	0.3576	0.173*
C10	0.1653 (4)	0.6397 (5)	0.4146 (6)	0.084 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H10A	0.1949	0.5858	0.3845	0.101*
H10B	0.1626	0.6907	0.3590	0.101*
C11	-0.0777 (4)	0.6972 (7)	0.4707 (7)	0.129 (4)
H11A	-0.0985	0.7584	0.4932	0.154*
H11B	-0.0886	0.6529	0.5299	0.154*
C12	-0.1428 (5)	0.6698 (5)	0.3598 (5)	0.082 (2)
H12A	-0.1106	0.6224	0.3200	0.099*
C13	-0.2310 (6)	0.6253 (5)	0.3937 (6)	0.086 (2)
H13A	-0.2119	0.5736	0.4470	0.104*
H13B	-0.2637	0.6716	0.4331	0.104*
C14	-0.2979 (5)	0.5892 (4)	0.2885 (5)	0.0648 (16)
H14A	-0.2665	0.5405	0.2512	0.078*
H14B	-0.3538	0.5619	0.3119	0.078*
C15	-0.3274 (3)	0.6681 (3)	0.2049 (4)	0.0448 (11)
H15A	-0.3640	0.7138	0.2416	0.054*
C16	-0.2440 (4)	0.7187 (4)	0.1693 (5)	0.0568 (14)
H16A	-0.2669	0.7726	0.1214	0.068*
H16B	-0.2118	0.6767	0.1237	0.068*
C17	-0.1739 (4)	0.7515 (4)	0.2759 (5)	0.0657 (16)
H17A	-0.2035	0.8001	0.3155	0.079*
H17B	-0.1182	0.7786	0.2516	0.079*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.0279 (3)	0.0487 (3)	0.0448 (3)	0.0002 (2)	0.0038 (2)	-0.0039 (2)
Cl1	0.0513 (8)	0.0921 (12)	0.0964 (12)	0.0202 (8)	0.0077 (8)	-0.0412 (10)
C12	0.0443 (6)	0.0524 (7)	0.0572 (7)	-0.0055 (5)	0.0023 (5)	0.0085 (6)
C13	0.0727 (9)	0.0612 (8)	0.0493 (7)	0.0159 (7)	0.0108 (6)	0.0109 (6)
01	0.0318 (16)	0.074 (2)	0.050 (2)	-0.0063 (17)	-0.0002 (14)	-0.0007 (18)
O2	0.0348 (17)	0.063 (2)	0.060 (2)	0.0050 (16)	0.0154 (15)	0.0004 (17)
03	0.086 (3)	0.063 (3)	0.112 (4)	0.007 (2)	0.051 (3)	0.012 (2)
O4	0.074 (3)	0.052 (2)	0.065 (2)	0.0020 (19)	-0.010 (2)	0.0026 (18)
N1	0.059 (3)	0.057 (3)	0.074 (3)	-0.014 (2)	0.020 (2)	-0.018 (2)
N2	0.034 (2)	0.059 (3)	0.056 (2)	-0.0009 (19)	0.0076 (18)	-0.004 (2)
C1	0.032 (2)	0.030 (2)	0.055 (3)	0.0004 (18)	0.006 (2)	-0.005 (2)
C2	0.028 (2)	0.035 (2)	0.046 (2)	-0.0022 (18)	0.0072 (18)	-0.0064 (19)
C3	0.036 (2)	0.059 (3)	0.038 (2)	-0.001 (2)	0.0023 (19)	-0.002 (2)
C4	0.035 (2)	0.054 (3)	0.040 (2)	0.000 (2)	0.0110 (19)	-0.003 (2)
C5	0.041 (3)	0.044 (3)	0.060 (3)	-0.001 (2)	0.001 (2)	-0.006 (2)
C6	0.057 (3)	0.064 (3)	0.056 (3)	0.001 (3)	0.003 (3)	-0.022 (3)
C7	0.042 (3)	0.116 (6)	0.097 (5)	0.002 (3)	-0.001 (3)	-0.063 (5)
C8	0.044 (4)	0.219 (11)	0.181 (9)	0.025 (5)	-0.015 (5)	-0.162 (9)
C9	0.038 (3)	0.181 (9)	0.198 (10)	0.017 (5)	-0.018 (5)	-0.149 (8)
C10	0.065 (4)	0.097 (5)	0.081 (4)	0.030 (4)	-0.013 (3)	-0.049 (4)
C11	0.084 (5)	0.167 (9)	0.113 (6)	0.057 (6)	-0.042 (5)	-0.090 (6)
C12	0.077 (4)	0.090 (5)	0.066 (4)	0.044 (4)	-0.024 (3)	-0.038 (4)
C13	0.120 (6)	0.074 (4)	0.054 (4)	-0.001 (4)	-0.013 (4)	-0.001 (3)

C14	0.089 (4)	0.052 (3)	0.049 (3)	-0.010 (3)	0.003 (3)	-0.001 (3)
C15	0.040 (2)	0.048 (3)	0.047 (3)	0.000 (2)	0.011 (2)	-0.004 (2)
C16	0.046 (3)	0.063 (3)	0.059 (3)	-0.011 (3)	0.005 (2)	0.012 (3)
C17	0.046 (3)	0.071 (4)	0.079 (4)	-0.011 (3)	0.009 (3)	-0.011 (3)
Geometric par	ameters (Å, °)					
Zn—01		1 956 (3)	С7—	-C8		1 543 (9)
Zn—Cl1		2 2418 (15)	C7–	-H7A		0.97
Zn—Cl3		2.2514 (15)	C7–	-H7B		0.97
Zn—Cl2		2.2869 (14)	C8-	-C11		1.410(7)
01—C1		1.272 (6)	C8–			1.537 (10)
02—C1		1.243 (6)	C8-	-H8A		0.98
03—H3B		1.00	C9–	-C10		1.510 (11)
03—H3C		1.00	C9–	-H9A		0.97
04—H4B		0.98	C9-	-H9B		0.97
O4-H4C		0.94	C10	H10A		0.97
N1		1 491 (6)	C10	H10R		0.97
N1H1A		0.89	C10			1 503 (6)
NI-HIR		0.89	C11			0.07
NI—IIIB		0.89	C11	H11R		0.97
NI-IIIC		1 500 (6)	C12			1.524(11)
N2		1.300 (0)	C12-			1.324(11) 1.524(0)
N2—H2A		0.89	C12-			1.334 (9)
N2—H2B		0.89	C12-			0.98
N2—H2C		0.89	C13-			1.505 (8)
C1 - C2		1.515(6)	C13-	—НІЗА		0.97
C2—C3		1.385 (6)	C13-	—ПІЗВ		0.97
$C2-C4^{I}$		1.386 (6)	C14-	C15		1.497 (7)
C3—C4		1.382 (6)	C14	—H14A		0.97
С3—НЗА		0.93	C14	—H14B		0.97
C4—C2 ⁱ		1.386 (6)	C15-	C16		1.512 (7)
C4—H4A		0.93	C15-	—H15A		0.98
C5-C10		1.505 (7)	C16	—C17		1.523 (8)
C5—C6		1.512 (7)	C16	—H16A		0.97
C5—H5A		0.98	C16	—H16B		0.97
C6—C7		1.506 (8)	C17-	—H17A		0.97
С6—Н6А		0.97	C17-	—H17B		0.97
C6—H6B		0.97				
O1—Zn—Cl1		118.31 (12)	С7—	-C8—H8A		106.4
O1—Zn—Cl3		101.50 (11)	C10	—С9—С8		107.6 (7)
Cl1—Zn—Cl3		112.19(7)	C10	—С9—Н9А		110.2
O1—Zn—Cl2		109.14 (12)	C8–	-С9—Н9А		110.2
Cl1—Zn—Cl2		108.05 (7)	C10	—С9—Н9В		110.2
Cl3—Zn—Cl2		107.06 (6)	C8-	-C9—H9B		110.2
C1Zn		124.7 (3)	H9A	—С9—Н9В		108.5
H3B-03-H3	С	113.5	C5-	-C10-C9		109.6 (6)
H4B-04-H4	С	113.5	C5-	-C10—H10A		109.8
C5—N1—H1A	-	109.5	C9–	-C10—H10A		109.8

C5—N1—H1B	109.5	C5-C10-H10B	109.8
H1A—N1—H1B	109.5	С9—С10—Н10В	109.8
C5—N1—H1C	109.5	H10A-C10-H10B	108.2
H1A—N1—H1C	109.5	C8—C11—C12	120.6 (7)
H1B—N1—H1C	109.5	C8—C11—H11A	107.2
C15—N2—H2A	109.5	C12—C11—H11A	107.2
C15—N2—H2B	109.5	C8—C11—H11B	107.2
H2A—N2—H2B	109.5	C12—C11—H11B	107.2
C15—N2—H2C	109.5	H11A—C11—H11B	106.8
H2A—N2—H2C	109.5	C11—C12—C13	107.0 (6)
H2B—N2—H2C	109.5	C11—C12—C17	114.7 (7)
O2—C1—O1	125.4 (4)	C13—C12—C17	109.0 (5)
O2—C1—C2	119.5 (4)	C11—C12—H12A	108.6
O1—C1—C2	115.2 (4)	C13—C12—H12A	108.6
C3—C2—C4 ⁱ	118.9 (4)	C17—C12—H12A	108.6
C3—C2—C1	120.7 (4)	C14—C13—C12	111.0 (6)
C4 ⁱ —C2—C1	120.4 (4)	C14—C13—H13A	109.4
C4—C3—C2	120.7 (4)	C12—C13—H13A	109.4
С4—С3—НЗА	119.7	C14—C13—H13B	109.4
С2—С3—НЗА	119.7	C12—C13—H13B	109.4
C3—C4—C2 ⁱ	120.4 (4)	H13A—C13—H13B	108.0
С3—С4—Н4А	119.8	C15—C14—C13	110.0 (5)
C2 ⁱ —C4—H4A	119.8	C15—C14—H14A	109.7
N1—C5—C10	108.6 (5)	C13—C14—H14A	109.7
N1—C5—C6	110.4 (4)	C15—C14—H14B	109.7
C10—C5—C6	111.6 (4)	C13—C14—H14B	109.7
N1—C5—H5A	108.7	H14A—C14—H14B	108.2
С10—С5—Н5А	108.7	C14—C15—N2	109.0 (4)
С6—С5—Н5А	108.7	C14—C15—C16	113.2 (4)
C7—C6—C5	110.4 (5)	N2-C15-C16	109.2 (4)
С7—С6—Н6А	109.6	C14—C15—H15A	108.4
С5—С6—Н6А	109.6	N2—C15—H15A	108.4
С7—С6—Н6В	109.6	C16—C15—H15A	108.4
С5—С6—Н6В	109.6	C15—C16—C17	110.6 (5)
H6A—C6—H6B	108.1	C15—C16—H16A	109.5
C6—C7—C8	107.2 (6)	C17—C16—H16A	109.5
С6—С7—Н7А	110.3	C15—C16—H16B	109.5
С8—С7—Н7А	110.3	C17—C16—H16B	109.5
С6—С7—Н7В	110.3	H16A—C16—H16B	108.1
С8—С7—Н7В	110.3	C16—C17—C12	111.3 (5)
H7A—C7—H7B	108.5	С16—С17—Н17А	109.4
C11—C8—C9	114.4 (7)	С12—С17—Н17А	109.4
C11—C8—C7	114.4 (7)	С16—С17—Н17В	109.4
C9—C8—C7	108.3 (7)	С12—С17—Н17В	109.4
С11—С8—Н8А	106.4	H17A—C17—H17B	108.0
С9—С8—Н8А	106.4		

Symmetry codes: (i) -x, -y+1, -z.

	р ц	TT 4		
D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
N1—H1A···Cl3	0.89	2.41	3.252 (4)	159
N1—H1B····Cl2 ⁱⁱ	0.89	2.51	3.290 (4)	147
N1—H1C···O3 ⁱⁱ	0.89	1.94	2.828 (5)	178
N2—H2A…Cl1 ⁱⁱⁱ	0.89	2.95	3.725 (5)	146
N2—H2A····Cl2 ⁱⁱⁱ	0.89	2.67	3.321 (4)	131
N2—H2B····O2 ⁱ	0.89	2.06	2.928 (4)	166
N2—H2C····O4 ^{iv}	0.89	1.95	2.813 (4)	164
O3—H3B…O2	1.00	1.81	2.798 (4)	167.8
O3—H3C···Cl1 ^v	1.06	2.24	3.262 (4)	160.3
O4—H4B…Cl3	0.98	2.21	3.172 (4)	164.9
O4—H4C···Cl2 ^{vi}	0.94	2.38	3.258 (3)	154.9
Symmetry codes: (ii) x , $-y+3/2$, $z+1/2$; (iii) $x-1$, y , $-z+1$.	z; (i) - <i>x</i> , - <i>y</i> +1, - <i>z</i> ; (iv) $-x$, $y+1/2$, $-z+1/2$; (v) $-x+1$, $-y+1$, $-z$;	(vi) -x+1, -y+1,

Hydrogen-bond geometry (Å, °)

